Asymptotic dimension, distributed algorithms, and local graph concepts

Marthe Bonamy¹ Cyril Gavoille¹ Timothé Picavet¹ Alexandra Wesolek²

1

¹LaBRI, Bordeaux

²TU Berlin

Distributed algorithms

Distributed algorithms

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

Running time *T*

Running time *T*

An example: 3-coloring

An example: 3-coloring

Complexity differences between LOCAL and centralized

Graph minors

H is a minor of *G*

- General graphs
	- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

- General graphs
	- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
	- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)

- General graphs
	- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
	- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
	- \cdot (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
	- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

- General graphs
	- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
	- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
	- \cdot (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
	- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
	- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

- General graphs
	- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
	- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
	- \cdot (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
	- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
	- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- \cdot $K_{2,t}$ -minor-free graphs
	- *O*(1)-approximation

Example 1: trees

Example 1: trees

Theorem

|{v ∈ V(*T*) *|* d(*v*) *≥* 2*}| ≤* 3 *·* MDS(*T*)

Reuse the analysis of trees?

• Every vertex is in a patato

- Every vertex is in a patato
- Diameter *≤* girth

- Every vertex is in a patato
- Diameter *≤* girth
- Spacing between same colors =*⇒* in parallel

- Every vertex is in a patato
- Diameter *≤* girth
- Spacing between same colors =*⇒* in parallel
- Finite number of colors 10 and 10 and

Asymptotic dimension = *d* if $\forall r, \exists C_1, C_2, \ldots, C_{d+1} \subseteq \mathcal{P}(V(G))$, $\exists f : \mathbb{N} \to \mathbb{N}$ such that

Asymptotic dimension

Asymptotic dimension = *d* if $\forall r, \exists C_1, C_2, \ldots, C_{d+1} \subseteq \mathcal{P}(V(G))$, $\exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

Asymptotic dimension

Asymptotic dimension = *d* if $\forall r, \exists C_1, C_2, \ldots, C_{d+1} \subseteq \mathcal{P}(V(G))$, $\exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• Disjointness: *∀B, B ′ ∈ Cⁱ* distincts*,* dist(*B, B ′*) *> r*

Asymptotic dimension

Asymptotic dimension = *d* if $\forall r, \exists C_1, C_2, \ldots, C_{d+1} \subseteq \mathcal{P}(V(G))$, $\exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• Disjointness: *∀B, B ′ ∈ Cⁱ* distincts*,* dist(*B, B ′*) *> r*

• Boundedness: *∀B ∈ Cⁱ ,* diam*G*(*B*) *≤ f*(*r*)

Dimension $= 1$

Example 2: the grid – try 1

Dimension *≤* 3

Example 2: the grid – try 2

Dimension $= 2!$

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020) *Every class forbidding a minor has asymptotic dimension ≤* 2*.*

Application: distributed algorithms

How to use graph theory in distributed algorithms ?

Application: distributed algorithms

How to use graph theory in distributed algorithms ?

```
Global concept
       ↓
Local concept
```
Application: distributed algorithms

How to use graph theory in distributed algorithms ?

Global concept *↓* Local concept

Definition

v is a *r-local cutvertex* if *v* is a cutvertex of *G* [*N r* [*v*]].

Theorem

For every graph G, $\#$ *cutvertices* \leq 3 MDS(*G*)*.*

⇓

Theorem

Let C be of asymptotic dimension d. Then \forall *r* \geq *r*(*C*)*,* $\#$ *<i>r***-local** cutvertices \leq 3(d + 1) MDS(*G*)*.*

Theorem

For every graph G and $S \subset V(G)$, $\#$ *cutvertices* $\in S \leq 3$ MDS(*G*, *N*[*S*]).

⇓

Theorem

Let C be of asymptotic dimension d. Then \forall *r* \geq *r*(*C*)*,* $\#$ *<i>r***-local** cutvertices \leq 3(d + 1) MDS(*G*)*.*

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5).

```
Dimension d, function f: sets C_1, C_2, \ldots, C_{d+1} for r = 5.
Let S be of weak-diameter f(5).
v ∈ S a (f(5) + 2)-local cutvertex.
```
Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5). $v \in S$ a $(f(5) + 2)$ -local cutvertex.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5). $v \in S$ a $(f(5) + 2)$ -local cutvertex. **Claim:** $N^2[S]$ ⊆ $N^{f(5)+2}[V]$.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5). $v \in S$ a $(f(5) + 2)$ -local cutvertex. **Claim:** $N^2[S]$ ⊆ $N^{f(5)+2}[V]$. Claim: *v* is a cutvertex of *G*[*N* 2 [*S*]] (separates *a* and *b*).

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5). *v* ∈ *S* a (*f*(5) + 2)-local cutvertex. **Claim:** $N^2[S]$ ⊆ $N^{f(5)+2}[V]$. Claim: *v* is a cutvertex of *G*[*N* 2 [*S*]] (separates *a* and *b*). Claim: $\#\text{cutvertex in } S \leq 3 \text{ MDS}(G[N^2[S]], N[S]) \leq 3$ 3 MDS(*G,N*[*S*]).

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for $r = 5$. Let *S* be of weak-diameter *f*(5). *v* ∈ *S* a (*f*(5) + 2)-local cutvertex. **Claim:** $N^2[S]$ ⊆ $N^{f(5)+2}[V]$. Claim: *v* is a cutvertex of *G*[*N* 2 [*S*]] (separates *a* and *b*). Claim: $\#\text{cutvertex in } S \leq 3 \text{ MDS}(G[N^2[S]], N[S]) \leq 3$ 3 MDS(*G,N*[*S*]). *⇓ d*+1

$$
\#(f(5) + 2) \text{-local cutvertex } \leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot \text{MDS}(G, N[S])
$$

$$
\#(f(5) + 2)\text{-local cutvertex} \leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot \text{MDS}(G, \underbrace{N[S]}_{\text{at distance 3}})
$$

(*N* 2 [*S*] are disjoint)

$$
\#(f(5) + 2) \text{-local cutvertex} \leq \sum_{i=1}^{d+1} 3 \cdot \text{MDS}(G) = 3(d+1) \cdot \text{MDS}(G).
$$

Theorem

Let C of asymptotic dimension d. Then $\forall r \ge r(C)$ *,* #*vertices* \in *r-local* 2*-cut* $\le 8(d+1)$ MVC(*G*)*.*

Applications: approximations on locally-*C* classes

Theorem

If there exists a LOCAL algorithm:

- *α-approximation of MDS*
- \cdot on $\mathcal C$
- *in constant time r*
- *+ technical condition*

Applications: approximations on locally-*C* classes

Theorem

If there exists a LOCAL algorithm:

- *α-approximation of MDS*
- \cdot on \mathcal{C}
- *in constant time r*
- *+ technical condition*

and if D is:

- \cdot $\Omega(r)$ -locally $\mathcal C$
- *of asymptotic dimension d*

Applications: approximations on locally-*C* classes

Theorem

If there exists a LOCAL algorithm:

- *α-approximation of MDS*
- \cdot *on* \mathcal{C}
- *in constant time r*
- *+ technical condition*

and if D is:

- \cdot $\Omega(r)$ -locally $\mathcal C$
- *of asymptotic dimension d*

Then there exists a LOCAL α (d + 1)-approximation of MDS on \mathcal{D} in time r.

Theorem

*On graphs without the minor K*2*,^t , there exists an O***(**1**)***-approximation (where the constant is independant of t) of Minimum Dominating Set in the LOCAL model, in f*(*t*) *rounds.*

Theorem

*On graphs without the minor K*2*,^t , there exists an O***(**1**)***-approximation (where the constant is independant of t) of Minimum Dominating Set in the LOCAL model, in f*(*t*) *rounds.*

Previous bound on $K_{3,t}$ -minor-free graphs: $(2 + \varepsilon) \cdot (t + 4)$ in $g(\varepsilon, t)$ rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Recap: 2 steps to go from global to local

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

 \rightarrow Apply asymptotic dimension

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

\rightarrow Apply asymptotic dimension

Asymptotic dimension *→* set *S* of small diameter

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

\rightarrow Apply asymptotic dimension

Asymptotic dimension *→* set *S* of small diameter local cutvertex *∈ S* =*⇒* cutvertex in *G*[*S*]

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

\rightarrow Apply asymptotic dimension

Asymptotic dimension *→* set *S* of small diameter local cutvertex *∈ S* =*⇒* cutvertex in *G*[*S*] Union bound to conclude Θ

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

 \rightarrow Apply asymptotic dimension

Asymptotic dimension *→* set *S* of small diameter local cutvertex *∈ S* =*⇒* cutvertex in *G*[*S*] Union bound to conclude Θ

? Without minor $H \rightarrow$ local $\mathcal{O}(pw(H))$ -approximation in constant time ?

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

∀G, ∀S ⊆ V(*G*)*, |{*cutvertices*} ∩ S| ≤* 3 *· MDS*(*G,N*[*S*])

 \rightarrow Apply asymptotic dimension

Asymptotic dimension *→* set *S* of small diameter local cutvertex *∈ S* =*⇒* cutvertex in *G*[*S*] Union bound to conclude Θ

? Without minor $H \rightarrow$ local $\mathcal{O}(pw(H))$ -approximation in constant time ?

