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The LOCAL model
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Running time T

Each vertex sees its distance-T neigh-
borhood and decides its return value.

Algo = A : neighborhood
distance-T 7→ return value

local
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An example: 3-coloring
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An example: 3-coloring
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Complexity differences between LOCAL and centralized

Maximum Independent Set
when ∃ universal vertex

Detecting Cycles

Easy in LOCAL
Hard in centralized

Hard in LOCAL
Easy in centralized

6



Graph minors

H H′ G

H is a minor of G
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State of the art for MDS with O(1) LOCAL rounds

• General graphs
• No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

• H-minor-free graphs
• Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny
2021)

• Planar graphs
• (11+ ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
• Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

• Outerplanar graphs
• 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

• K2,t-minor-free graphs
• O(1)-approximation
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Example 1: trees

Theorem
|{v ∈ V(T) | d(v) ≥ 2}| ≤ 3 ·MDS(T)
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Example 2: high girth graphs

Reuse the analysis of trees?

• Every vertex is in a patato
• Diameter ≤ girth
• Spacing between same colors =⇒ in parallel
• Finite number of colors
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Asymptotic dimension

Asymptotic dimension = d if ∀r, ∃C1, C2, . . . , Cd+1 ⊆ P(V(G)), ∃f : N → N such that

• Cover: V(G) =
⋃

i
⋃

B∈Ci B

• Disjointness: ∀B,B′ ∈ Ci distincts, dist(B,B′) > r

• Boundedness: ∀B ∈ Ci, diamG(B) ≤ f(r)
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Example 1: the path

Diameter 2Distance 4

Dimension = 1
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Example 2: the grid – try 1

Dimension ≤ 3
13



Example 2: the grid – try 2

Dimension = 2!
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Asymptotic dimension and graph minors

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020)
Every class forbidding a minor has asymptotic dimension ≤ 2.

15



Application: distributed algorithms

How to use graph theory in distributed algorithms ?

Global concept
↓

Local concept
Definition
v is a r-local cutvertex if
v is a cutvertex of
G [Nr[v]].

G
[
N3[v]

]
v
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Cutvertices locaux

Theorem
For every graph G, #cutvertices ≤ 3MDS(G).

⇓

Theorem
Let C be of asymptotic dimension d.
Then ∀r ≥ r(C),#r-local cutvertices ≤ 3(d+ 1)MDS(G).
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Cutvertices locaux

Theorem
For every graph G and S ⊆ V(G), #cutvertices ∈ S ≤ 3MDS(G,N[S]).

⇓

Theorem
Let C be of asymptotic dimension d.
Then ∀r ≥ r(C),#r-local cutvertices ≤ 3(d+ 1)MDS(G).
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Proof

Dimension d, function f: sets C1, C2, . . . , Cd+1 for r = 5.

Let S be of weak-diameter f(5).
v ∈ S a (f(5) + 2)-local cutvertex.
Claim: N2[S] ⊆ Nf(5)+2[v].
Claim: v is a cutvertex of G[N2[S]] (separates a and b).
Claim: #cutvertex in S ≤ 3MDS(G[N2[S]],N[S]) ≤
3MDS(G,N[S]).

⇓

#(f(5) + 2)-local cutvertex ≤
d+1∑
i=1

∑
S∈Ci

3 ·MDS(G,N[S])

G
[
Nf(5)+2[v]

]

G
[
N2[S]

]

S
v

a
b
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End of the proof

#(f(5) + 2)-local cutvertex ≤
d+1∑
i=1

∑
S∈Ci

3 ·MDS(G, N[S]︸︷︷︸
at distance 3

)

(N2[S] are disjoint)

#(f(5) + 2)-local cutvertex ≤
d+1∑
i=1

3 ·MDS(G) = 3(d+ 1) ·MDS(G).

19
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Applications: local 2-cuts

Theorem
Let C of asymptotic dimension d.
Then ∀r ≥ r(C),#vertices ∈ r-local 2-cut ≤ 8(d+ 1)MVC(G).

20



Applications: approximations on locally-C classes

Theorem
If there exists a LOCAL algorithm:

• α-approximation of MDS
• on C
• in constant time r
• + technical condition

and if D is:

• Ω(r)-locally C
• of asymptotic dimension d

Then there exists a LOCAL α(d+ 1)-approximation of MDS on D in time r.
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Applications: MDS in LOCAL model

Theorem
On graphs without the minor K2,t, there exists an O(1)-approximation (where
the constant is independant of t) of Minimum Dominating Set in the LOCAL
model, in f(t) rounds.

Previous bound on K3,t-minor-free graphs: (2+ ε) · (t+ 4) in g(ε, t) rounds (Heydt,
Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).
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Conclusion and perspectives

Recap: 2 steps to go from global to local

Relativize the result to all subsets S:
∀G, ∀S ⊆ V(G), |{cutvertices} ∩ S| ≤ 3 ·MDS(G,N[S])

Apply asymptotic dimension
Asymptotic dimension → set S of small diameter

local cutvertex ∈ S =⇒ cutvertex in G[S]
Union bound to conclude

Without minor H → local O(pw(H))-approximation in constant time ?

Thanks!

23
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