Asymptotic dimension, distributed algorithms, and local graph concepts

Marthe Bonamy¹ Cyril Gavoille¹ <u>Timothé Picavet</u>¹ Alexandra Wesolek²

¹LaBRI, Bordeaux

²TU Berlin

Distributed algorithms

Distributed view

Distributed algorithms

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

Running time T

Running time T

An example: 3-coloring

An example: 3-coloring

Complexity differences between LOCAL and centralized

Graph minors

H is a minor of G

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - + (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- $K_{2,t}$ -minor-free graphs
 - $\mathcal{O}(1)$ -approximation

Example 1: trees

Example 1: trees

Theorem

 $|\{v \in V(T) \mid d(v) \ge 2\}| \le 3 \cdot \mathsf{MDS}(T)$

Reuse the analysis of trees?

• Every vertex is in a patato

- Every vertex is in a patato
- \cdot Diameter \leq girth

- Every vertex is in a patato
- \cdot Diameter \leq girth
- \cdot Spacing between same colors \implies in parallel

- Every vertex is in a patato
- \cdot Diameter \leq girth
- \cdot Spacing between same colors \implies in parallel
- Finite number of colors

Asymptotic dimension = d if $\forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)), \exists f : \mathbb{N} \to \mathbb{N}$ such that

Asymptotic dimension

Asymptotic dimension = d if $\forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)), \exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

Asymptotic dimension

Asymptotic dimension = d if $\forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)), \exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• **Disjointness:** $\forall B, B' \in C_i$ distincts, dist(B, B') > r

Asymptotic dimension

Asymptotic dimension = d if $\forall r, \exists C_1, C_2, \dots, C_{d+1} \subseteq \mathcal{P}(V(G)), \exists f : \mathbb{N} \to \mathbb{N}$ such that

• Cover: $V(G) = \bigcup_i \bigcup_{B \in C_i} B$

• **Disjointness:** $\forall B, B' \in C_i$ distincts, dist(B, B') > r

• **Boundedness:** $\forall B \in C_i, \operatorname{diam}_G(B) \leq f(r)$

Dimension = 1

Example 2: the grid – try 1

Dimension ≤ 3

Example 2: the grid – try 2

Dimension = 2!

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020) *Every class forbidding a minor has asymptotic dimension* \leq 2.

Application: distributed algorithms

How to use graph theory in distributed algorithms ?

Application: distributed algorithms

How to use graph theory in distributed algorithms ?

```
Global concept
↓
Local concept
```

Application: distributed algorithms

How to use graph theory in distributed algorithms ?

Global concept ↓ Local concept

Definition

v is a r-local cutvertex if v is a cutvertex of G [N^r[v]].

Theorem

For every graph G, #cutvertices $\leq 3 MDS(G)$.

\downarrow

Theorem

Let *C* be of asymptotic dimension *d*. Then $\forall r \geq r(C), \#r\text{-local cutvertices} \leq 3(d + 1) \text{MDS}(G)$.

Theorem

For every graph G and $S \subseteq V(G)$, #cutvertices $\in S \leq 3 MDS(G, N[S])$.

Theorem

Let C be of asymptotic dimension d. Then $\forall r \geq r(C), \#r\text{-local} \text{ cutvertices} \leq 3(d + 1) \text{ MDS}(G).$

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let S be of weak-diameter f(5).

```
Dimension d, function f: sets C_1, C_2, \ldots, C_{d+1} for r = 5.
Let S be of weak-diameter f(5).
v \in S a (f(5) + 2)-local cutvertex.
```

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let S be of weak-diameter f(5). $v \in S$ a (f(5) + 2)-local cutvertex.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let *S* be of weak-diameter *f*(5). $v \in S$ a (*f*(5) + 2)-local cutvertex. Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$.

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let *S* be of weak-diameter *f*(5). $v \in S$ a (*f*(5) + 2)-local cutvertex. Claim: $N^2[S] \subseteq N^{f(5)+2}[v]$. Claim: *v* is a cutvertex of $G[N^2[S]]$ (separates *a* and *b*).

Dimension *d*, function *f*: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let S be of weak-diameter f(5). $v \in S$ a (f(5) + 2)-local cutvertex. Claim: $N^2[S] \subset N^{f(5)+2}[v]$. **Claim:** v is a cutvertex of $G[N^2[S]]$ (separates a and b). **Claim:** #cutvertex in $S \leq 3$ MDS($G[N^2[S]], N[S]$) \leq 3 MDS(G, N[S]).

Dimension d, function f: sets $C_1, C_2, \ldots, C_{d+1}$ for r = 5. Let S be of weak-diameter f(5). $v \in S$ a (f(5) + 2)-local cutvertex. Claim: $N^2[S] \subset N^{f(5)+2}[v]$. **Claim:** v is a cutvertex of $G[N^2[S]]$ (separates a and b). **Claim:** #cutvertex in $S \leq 3$ MDS($G[N^2[S]], N[S]$) \leq 3 MDS(G, N[S]).

$$#(f(5) + 2) \text{-local cutvertex } \leq \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot \mathsf{MDS}(G, N[S])$$

$$#(f(5) + 2) - \text{local cutvertex} \le \sum_{i=1}^{d+1} \sum_{S \in C_i} 3 \cdot \text{MDS}(G, \underbrace{N[S]}_{\text{at distance } 3})$$

(*N*²[*S*] are disjoint)

$$\#(f(5)+2)\text{-local cutvertex} \leq \sum_{i=1}^{d+1} 3 \cdot \mathsf{MDS}(G) = 3(d+1) \cdot \mathsf{MDS}(G)$$

Theorem

Let C of asymptotic dimension d. Then $\forall r \geq r(C), \#$ vertices \in r-local 2-cut $\leq 8(d + 1)$ MVC(G).

Applications: approximations on locally- \mathcal{C} classes

Theorem

If there exists a LOCAL algorithm:

- + α -approximation of MDS
- \cdot on ${\mathcal C}$
- in constant time r
- + technical condition

Applications: approximations on locally- \mathcal{C} classes

Theorem

If there exists a LOCAL algorithm:

- + α -approximation of MDS
- \cdot on ${\mathcal C}$
- in constant time r
- + technical condition

and if ${\mathcal D}$ is:

- $\cdot \, \Omega(r)$ -locally \mathcal{C}
- of asymptotic dimension d

Applications: approximations on locally- $\mathcal C$ classes

Theorem

If there exists a LOCAL algorithm:

- + α -approximation of MDS
- \cdot on ${\mathcal C}$
- in constant time r
- + technical condition

and if ${\mathcal D}$ is:

- $\Omega(r)$ -locally C
- of asymptotic dimension d

Then there exists a LOCAL $\alpha(d + 1)$ -approximation of MDS on \mathcal{D} in time r.

Theorem

On graphs without the minor $K_{2,t}$, there exists an $\mathcal{O}(1)$ -approximation (where the constant is **independant of t**) of Minimum Dominating Set in the LOCAL model, in f(t) rounds.

Theorem

On graphs without the minor $K_{2,t}$, there exists an $\mathcal{O}(1)$ -approximation (where the constant is **independant of t**) of Minimum Dominating Set in the LOCAL model, in f(t) rounds.

Previous bound on $K_{3,t}$ -minor-free graphs: $(2 + \varepsilon) \cdot (t + 4)$ in $g(\varepsilon, t)$ rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Recap: 2 steps to go from global to local

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

➢ Apply asymptotic dimension

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

➢ Apply asymptotic dimension

Asymptotic dimension \rightarrow set S of small diameter

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

➢ Apply asymptotic dimension

Asymptotic dimension \rightarrow set S of small diameter local cutvertex $\in S \implies$ cutvertex in G[S]

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

➢ Apply asymptotic dimension

Asymptotic dimension \rightarrow set *S* of small diameter local cutvertex $\in S \implies$ cutvertex in *G*[*S*] Union bound to conclude \bigcirc

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

Apply asymptotic dimension

Asymptotic dimension \rightarrow set S of small diameter local cutvertex $\in S \implies$ cutvertex in G[S]Union bound to conclude \bigcirc

? Without minor $H \rightarrow \text{local } \mathcal{O}(pw(H))$ -approximation in constant time ?

Recap: 2 steps to go from global to local

Q Relativize the result to all subsets *S*:

 $\forall G, \forall S \subseteq V(G), |\{ \text{cutvertices} \} \cap S| \leq 3 \cdot MDS(G, N[S])$

Apply asymptotic dimension

Asymptotic dimension \rightarrow set S of small diameter local cutvertex $\in S \implies$ cutvertex in G[S]Union bound to conclude \bigcirc

? Without minor $H \rightarrow \text{local } \mathcal{O}(pw(H))$ -approximation in constant time ?

